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Abstract. We show how to extract the energy- and coordinate dependence of dipole-moments for a neutral-
to-ionic molecular transition from time-resolved photoelectron spectra. The procedure needs the potential
surfaces of the neutral and the cationic state which are involved in the ionization process as an input. Given
these potentials and the laser parameters it is possible to determine the functional form of the transition
dipole moment from the measured time- and energy-resolved transient signals.

PACS. 31.70.Hq Time-dependent phenomena: excitation and relaxation processes, and reaction rates –
33.80.Wz Other multiphoton processes

1 Introduction

Time-resolved photoelectron spectroscopy (TRPES) has
evolved into a powerful technique to study the dynamics of
molecules. Here, an ultrashort laser pulse (pump) prepares
a wave packet in the system and a time-delayed second
pulse (probe) leads to ionization. The ejected photoelec-
trons then can be analyzed with respect to their kinetic
energy at different values of the pump-probe delay. The
first experiments which were performed with femtosec-
ond resolution were carried out by Cyr and Hayden [1]
and by now several groups have shown the usefulness
of this method [2–13]; for a comprehensive list of refer-
ences see the recent review article by Neumark [14]. As
an exciting trend, it has now become possible to simul-
taneously measure the energy and angular distribution of
the ejected electrons [15–17]. Also, it was shown that, by
using a set of time-delayed ionizing pulses, one can ob-
serve the interference of outgoing electron waves thereby
clearly distinguishing between optical and matter-wave
interferences [18].

The first theoretical studies of pump-probe femtosec-
ond photoelectron spectroscopy were carried out by Seel
and Domcke regarding the internal conversion dynam-
ics in pyrazine [19,20]. Similar calculations for diatomic
molecules were performed in our group which revealed
that temporal changes of nuclear probability densities
can be mapped directly onto the spectrum [21–23], a
fact which later was confirmed experimentally [2]. Various
other theoretical studies have been undertaken [24–28],
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where most recently the topic of time–resolved photoelec-
tron angular distributions has been addressed [29–32].

We have recently investigated the powers of TRPES
finding this technique to be a sensitive tool to determine
e.g. the influence of chirped pulse excitation on the prepa-
ration of vibrational wave packets [33], to detect the result
of a quantum target-state preparation obtained via opti-
mal control theory [34] or to selectively probe photofrag-
ments resulting from multiple dissociation processes [35].
Here we address another quantity, namely, the transition
dipole moment between a neutral and an ionic state. This
observable, in general, depends on the molecular geometry
as well as on the photoelectron energy. Dipole moments
for neutral-to-neutral transitions can in principle be cal-
culated using quantum chemical program packages (pro-
vided the electronic structure problem for the initial and
final states is solved) though the effort to get reliable val-
ues is often large. For the neutral-to-ionic transition the
calculations need the treatment of a scattering process in-
volving the correlated continuum wave function of the free
electron [31,32] and are hence much more demanding.

Time-resolved spectroscopy aims at the detection of
structural molecular changes or fragmentation processes
in real time. The interpretation of data is usually per-
formed within the Condon approximation which assumes
a constant transition dipole moment µ connecting the elec-
tronic states involved in the probe transition. Not much
attention has been paid to a possible breakdown of this
approximation. In most cases and for neutral-to-neutral
transitions, a resonant probe excitation is possible only
within a single small spatial window depending on the in-
tramolecular coordinates. Within the restricted window,
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the coordinate dependence of µ can usually be ignored.
The situation where two well separated excitation win-
dows exist already illustrates the importance of a possible
coordinate dependence of the transition dipole moment:
within the Condon approximation, the pump-probe sig-
nal will exhibit maxima of approximately equal height at
times when the prepared wave packet passes one or the
other excitation window. On the other hand, if µ assumes
different values in the two windows, the signal will show
maxima of different height or even only one maximum.
The situation is different in a direct probe-ionization pro-
cess where, for sufficiently large photon energy, ionization
takes place independently of the localization of the mov-
ing wave packet. Here, the Condon approximation yields
a delay-time independent total ion signal, an effect which
was first pointed out by Seel and Domcke [19,36]. Pump-
probe ionization experiments on K2 [37] and NaI [38]
showed that the obtained data could not be explained
without the assumption of a coordinate-dependent dipole
moment. Also, theoretical work has been reported which
stresses the importance of the breakdown of the Condon
approximation [31,32].

Below we will demonstrate how, using a combination
of experimentally and theoretically derived information,
the functional dependence of the dipole moment (for a
neutral-to-ionic transition) can be obtained. Section 2 con-
tains the theoretical approach. The latter is illustrated in
Section 3 using a numerical example.

2 Theory

We regard a diatomic molecule with vibrational coordi-
nate R, two neutral electronic states (|0〉, |1〉) and an
cationic state |I〉. A pump-probe ionization scheme is dis-
played in Figure 1: a first laser-pulse (ω1) initiates a tran-
sition |1〉 ← |0〉, preparing a wave packet |ψ1(t)〉. A time-
delayed probe pulse then ionizes the molecule resulting in
an ensemble of ionic wave packets |ψE(t)〉. They corre-
spond to the ejection of a photoelectron with kinetic en-
ergy E and are labelled accordingly. Provided the dipole
approximation holds, these wave packets are given within
time-dependent perturbation theory and for times after
the probe excitation is finished [39], as (atomic units are
employed in what follows):

|ψE(t)〉 = e−i(HI+E)(t−τ) |ψE(τ)〉, (1)

where HI is the nuclear Hamiltonian in the ionic state, τ
is the delay-time and we used the definition

|ψE(τ)〉 = i
∫ ∞

−∞
dt a2(t) e−iω2tei(HI+E)t

× µI1 e−iH1t |ψ1(τ)〉. (2)

Here µI1 is the projection of the transition dipole moment
operator on the polarization vector of the electric field,
ω2 is the probe-laser frequency and a2(t) describes the
time-envelope of the laser pulse. The above expression (2)
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Fig. 1. Pump-probe ionization scheme for a diatomic
molecule: an ultrashort laser pulse (pump, ω1) induces a transi-
tion from the electronic ground state |0〉 to an excited state |1〉.
After a time-delay ionization takes place through the interac-
tion with a second pulse (probe, ω2). During this process pho-
toelectrons are produced with different kinetic energies E and
molecules are prepared in the cationic electronic state |I〉. The
displayed potential curves correspond to electronic states of
the Na2 molecule.

for the nuclear wave function assumes a separation of the
photoelectron from all additional particles so that its total
energy is given simply by its kinetic energy E [19,20].

The time-resolved photoelectron spectrum is defined as

P (τ, E) = 〈ψE(τ)|ψE(τ)〉. (3)

An approximate equation for the ionic wave function can
be obtained if commutators between the operatorsHI , H1

and µI1 are ignored [40–43], so that

eiHI t µI1 e−iH1t ∼ µI1 eiDI1t, (4)

where DI1(R) = VI(R)−V1(R) is the difference potential.
Within the approximation of equation (4) which is

valid for short pulses and becomes exact for a constant
difference potential, the photoelectron spectrum takes the
form

P (τ, E) =
∫

dR |I(R,E) ψ1(R, τ) µI1(R,E)|2, (5)

with the Fourier-integral

I(R,E) =
∫ ∞

−∞
dt ei(DI1(R)−(ω2−E))t a2(t). (6)

Using the abbreviations

M(R,E) = |µI1(R,E)|2 (7)

and

g(R, τ, E) = |I(R,E) ψ1(R, τ)|2, (8)
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the photoelectron spectrum can be written as

P (τ, E) =
∫

dR g(R, τ, E) M(R,E). (9)

Suppose now, that the potential curves of the involved
neutral and ionic states (see Fig. 1) are available. If, fur-
thermore, the parameters of the pump- and probe-pulse
are known, the function g(R, τ, E) can be calculated by
solving the time–dependent Schrödinger equation. On the
other hand, we assume that a measurement that can be
routinely performed [2–13] provides the spectrum for a set
of energies Ei and delay-times τm. In order to determine
the modulus squared of the R- and E-dependent tran-
sition dipole function from the measured spectrum and
the calculated function g, we discretize the integral equa-
tion (9) as

P (τm, Ei) ∼ ∆R
∑

n

g(Rn, τm, Ei) M(Rn, Ei). (10)

Defining the matrix

G(Ei) =


 g(R1, τ1, Ei) ... g(R1, τN , Ei)

... ... ...
g(RN , τ1, Ei) ... g(RN , τN , Ei)


 , (11)

the unknown vector M(Rn, Ei) can be calculated for a
fixed value of the energy Ei:


 M(R1, Ei)

...
M(RN , Ei)




t

=
1
∆R

(G(Ei))−1


 P (τ1, Ei)

...
P (τN , Ei)


 .

(12)
The solution of the matrix equation allows for the deter-
mination of the coordinate dependence of the transition
dipole moment. In addition, if the procedure is repeated
for a different energy, a possible dependence on E can be
extracted.

If, on the other hand, the delay time τm is fixed and dif-
ferent values of the photoelectron energies are employed,
one finds:

 M(R1, E1)
...

M(RN , EN )




t

=
1
∆R

(G(τm))−1


 P (τm, E1)

...
P (τm, EN )


 ,

(13)
where the appearing matrix is of the form

G(τm) =


 g(R1, τm, E1) ... g(R1, τm, EN )

... ... ...
g(RN , τm, EN ) ... g(RN , τm, EN )


 . (14)

We note that, using the latter equation, it is not possible
to separate the coordinate– from the energy–dependence.
However, the energy dependence of the transition dipole
moment is expected to be weak for a direct ionization
process so that one may extract the variation of the dipole
moment with the bond length also using equation (13).

The feasibility of the approach as outlined above is best
illustrated using a numerical example which we present in
the next section.

3 Numerical application

As an example we apply the above described scheme to the
Na2 molecule. The potential curves for the 1Σ+

g electronic
ground state [45], the double minimum state 1Σ+

u [46,47]
and the ionic ground state 2Σ+

g [48] are shown in Fig-
ure 1. The pump-probe ionization spectroscopy involv-
ing the double minimum state as an intermediate state
has been carried out experimentally [49,50]. Very recently,
time-resolved photoelectron spectra have been obtained in
the group of Baumert [51]. Also, theoretical investigations
were performed [22,31].

We have calculated time-resolved photoelectron spec-
tra using Gaussian pump- and probe-pulses where the
field envelope had a full width at half maximum of 50 fs.
The pump wavelength was set to 332 nm and the probe
wavelength was chosen to be 430 nm. The time-dependent
Schrödinger equation was integrated employing standard
numerical procedures [44]. We used time-dependent per-
turbation theory to describe the pump process and the
spectra were obtained using equation (9). The initial state
was the 1Σ+

g -vibrational ground state and the rotational
degree-of-freedom was not included.

An essential quantity in obtaining the transition dipole
moment is the coordinate- and energy-dependent window
function I(R,E), see equation (6). The modulus squared
of the latter is displayed in the upper panel of Figure 2.
Note that for a different choice of the probe-pulse wave-
length, the contours are identical but shifted vertically.
The lower panel contains a contour plot of the modu-
lus squared of the vibrational wave packet which is pre-
pared in the pump process. Its time-evolution is shown
over half a vibrational period in the double-minimum po-
tential. Since the photoelectron spectrum is obtained as
an integral over the wave function times the window func-
tion it can be directly inferred from the figure that the
spectrum shifts as the wave packet changes its position.
This is the basic idea of time–resolved photoelectron spec-
troscopy [19,20,23].

Regard now equation (12): in order to avoid singulari-
ties when inverting the matrix g(Rn, τm, Ei) one has to en-
sure, that the discrete delay times τm are chosen such that
the spectrum is non-zero for the predefined energyEi at
all considered delay-times. Obviously, when g(Rn, τm, Ei)
is zero for the given energy we cannot extract any infor-
mation about the dipole moment.

Also, one has to take a sufficiently large number of
delay-times τm into account, since this number determines
the number of points Rn which, in turn, determine the
accuracy with which the photoelectron spectrum is cal-
culated (e.g. Eq. (10)). This, of course, restricts the val-
ues Rn for which we are able to determine M(R,E). For
practical purposes it is necessary, in order to construct
the complete functional form of the transition dipole mo-
ment, to adjust the set of delay–times and energies as
the wave packet moves from shorter to longer distances.
This adjustment, however, is straightforward to perform
since the proper choice of parameters can immediately be
taken from Figure 2. As an example we choose a fixed
energy of E = 1.3 eV, see Figure 2. Here the window
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Fig. 2. Upper panel: contour diagram of the energy- and
coordinate-dependent window function I(R,E), as defined
in equation (6). Lower panel: contour lines of the modulus
squared of the vibrational wave packet ψ(R, t) in state |1〉.
In the shown time-interval, the packet moves about half a
vibrational period. The arrows indicate that at a delay time
of ∼200 fs, where the wave packet is located around an average
position of 5 Å the photoelectron spectrum assumes nonzero
values at an energy of ∼1.3 eV.

function is nonzero in a range of ∼4.5–5.5 Å. The wave
packet is located in this spatial window at delay times be-
tween 150 and 250 fs. The matrix inversion as defined in
equation (12) will thus yield the coordinate dependence
of |µ(R,E)|2 for the chosen energy at the values of R as
detailed above.

We have chosen various forms of a coordinate-
dependent transition dipole moment and calculated time-
resolved photoelectron spectra. The latter were then used
to reconstruct the dipole moment. In the numerical proce-
dure we neglected the energy dependence of the function
since its determination is formally equivalent to the calcu-
lation of the R-dependence, see equation (12). By adjust-
ing the energy E and the delay-times we were able to con-
struct the entire dipole function in the range of R which is
accessible by the wave-packet motion (from about 3 to 9 Å
for the laser parameters as used in the simulation).

Let us explore the sensitivity of the method by choos-
ing a numerically demanding example. The lower panel
of Figure 3 displays a dipole-moment which, over a small
range of 0.4 Å, shows a small deviation from a constant
value. Such an behaviour could occur if e.g. the neutral
electronic state is influenced by a non–adiabatic coupling
to a close lying state of the same symmetry (this indeed
is the case for our model system, although the coupling
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Fig. 3. Upper panel: constructed modulus squared of R-
dependent transition dipole moment. Here the photoelectron
spectrum at a fixed energy was taken at 10 different times,
yielding 10 values of the dipole function. Lower panel: mod-
ulus squared of the parameterized transition dipole moment
which entered into the numerical calculation of the photoelec-
tron spectrum.

region is larger, see Fig. 1). The functional form of the
dipole-moment was chosen to be

µ(R,E) = 1 + 8(R−R0) e−α(R−R0)2 , (15)

with the particular values of R0 = 5.08 Å and α =
0.2 Å−2.

We will not discuss matters of experimental resolution
since it is intuitively clear that the presence of large noise
will forbid finer structures to be resolved. The upper panel
of Figure 3 shows the reconstructed function M(R,Ef).
It was obtained by varying the delay-time in an interval
from 170 to 215 fs in steps of 5 fs and using the fixed
energy Ef = 1.28 eV. In this example the construction
works excellent.

In summary, we have proposed a numerical method
to extract the energy- and coordinate dependence of the
transition dipole moments for neutral-to-ionic transitions
from available photoelectron spectra. The procedure can
be applied if the photoelectron spectra are measured suf-
ficiently accurate and if the potential energy surfaces are
known, such that a calculation of these spectra can be
carried out. The dipole function is obtained via a matrix
inversion. The transition moment cannot be obtained in
a single step. Due to this limitation the construction has
to be repeated for varying bondlengths, thereby choos-
ing proper values of the photoelectron energy and the
delay-time.
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